Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Int J Mol Sci ; 24(9)2023 May 05.
Article in English | MEDLINE | ID: covidwho-2320397

ABSTRACT

We have previously published research on the anti-viral properties of an alkaloid mixture extracted from Nuphar lutea, the major components of the partially purified mixture found by NMR analysis. These are mostly dimeric sesquiterpene thioalkaloids called thiobinupharidines and thiobinuphlutidines against the negative strand RNA measles virus (MV). We have previously reported that this extract inhibits the MV as well as its ability to downregulate several MV proteins in persistently MV-infected cells, especially the P (phospho)-protein. Based on our observation that the Nuphar extract is effective in vitro against the MV, and the immediate need that the coronavirus disease 2019 (COVID-19) pandemic created, we tested here the ability of 6,6'-dihydroxythiobinupharidine DTBN, an active small molecule, isolated from the Nuphar lutea extract, on COVID-19. As shown here, DTBN effectively inhibits SARS-CoV-2 production in Vero E6 cells at non-cytotoxic concentrations. The short-term daily administration of DTBN to infected mice delayed the occurrence of severe clinical outcomes, lowered virus levels in the lungs and improved survival with minimal changes in lung histology. The viral load on lungs was significantly reduced in the treated mice. DTBN is a pleiotropic small molecule with multiple targets. Its anti-inflammatory properties affect a variety of pathogens including SARS-CoV-2 as shown here. Its activity appears to target both pathogen specific (as suggested by docking analysis) as well as cellular proteins, such as NF-κB, PKCs, cathepsins and topoisomerase 2, that we have previously identified in our work. Thus, this combined double action of virus inhibition and anti-inflammatory activity may enhance the overall effectivity of DTBN. The promising results from this proof-of-concept in vitro and in vivo preclinical study should encourage future studies to optimize the use of DTBN and/or its molecular derivatives against this and other related viruses.


Subject(s)
Alkaloids , COVID-19 , Nuphar , Mice , Animals , SARS-CoV-2 , Nuphar/chemistry , Alkaloids/pharmacology , Alkaloids/therapeutic use , Alkaloids/chemistry , Plant Extracts/pharmacology , Anti-Inflammatory Agents/pharmacology , Mice, Transgenic
2.
J Nat Prod ; 86(4): 1061-1073, 2023 04 28.
Article in English | MEDLINE | ID: covidwho-2297701

ABSTRACT

Botanical natural products have been widely consumed for their purported usefulness against COVID-19. Here, six botanical species from multiple sources and 173 isolated natural product compounds were screened for blockade of wild-type (WT) SARS-CoV-2 infection in human 293T epithelial cells overexpressing ACE-2 and TMPRSS2 protease (293TAT). Antiviral activity was demonstrated by an extract from Stephania tetrandra. Extract fractionation, liquid chromatography-mass spectrometry (LC-MS), antiviral assays, and computational analyses revealed that the alkaloid fraction and purified alkaloids tetrandrine, fangchinoline, and cepharanthine inhibited WT SARS-CoV-2 infection. The alkaloids and alkaloid fraction also inhibited the delta variant of concern but not WT SARS-CoV-2 in VeroAT cells. Membrane permeability assays demonstrate that the alkaloids are biologically available, although fangchinoline showed lower permeability than tetrandrine. At high concentrations, the extract, alkaloid fractions, and pure alkaloids induced phospholipidosis in 293TAT cells and less so in VeroAT cells. Gene expression profiling during virus infection suggested that alkaloid fraction and tetrandrine displayed similar effects on cellular gene expression and pathways, while fangchinoline showed distinct effects on cells. Our study demonstrates a multifaceted approach to systematically investigate the diverse activities conferred by complex botanical mixtures, their cell-context specificity, and their pleiotropic effects on biological systems.


Subject(s)
Alkaloids , Antineoplastic Agents , Benzylisoquinolines , COVID-19 , Stephania tetrandra , Stephania , Humans , Stephania tetrandra/chemistry , SARS-CoV-2 , Benzylisoquinolines/pharmacology , Benzylisoquinolines/chemistry , Alkaloids/pharmacology , Alkaloids/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antiviral Agents/pharmacology , Stephania/chemistry
3.
Phytother Res ; 37(5): 2168-2186, 2023 May.
Article in English | MEDLINE | ID: covidwho-2305109

ABSTRACT

In the search for compounds that inhibit the SARS-CoV-2 after the onset of the COVID-19 pandemic, isoquinoline-containing alkaloids have been identified as compounds with high potential to fight the disease. In addition to having strong antiviral activities, most of these alkaloids have significant anti-inflammatory effects which are often manifested through the inhibition of a promising host-based anti-COVID-19 target, the p38 MAPK signaling pathway. In the present review, our pharmacological and medicinal chemistry evaluation resulted in highlighting the potential of anti-SARS-CoV-2 isoquinoline-based alkaloids for the treatment of COVID-19 patients. Considering critical parameters of the antiviral and anti-inflammatory activities, mechanism of action, as well as toxicity/safety profile, we introduce the alkaloids emetine, cephaeline, and papaverine as high-potential therapeutic agents for use in the treatment of COVID-19. Although preclinical studies confirm that some isoquinoline-based alkaloids reviewed in this study have a high potential to inhibit the SARS-CoV-2, their entry into drug regimens of COVID-19 patients requires further clinical trial studies and toxicity evaluation.


Subject(s)
Alkaloids , COVID-19 , Humans , Chemistry, Pharmaceutical , SARS-CoV-2 , Pandemics , Isoquinolines/pharmacology , Isoquinolines/therapeutic use , Alkaloids/pharmacology , Alkaloids/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
4.
Molecules ; 28(7)2023 Mar 31.
Article in English | MEDLINE | ID: covidwho-2291561

ABSTRACT

The pharmacological actions of benzylisoquinoline alkaloids are quite substantial, and have recently attracted much attention. One of the principle benzylisoquinoline alkaloids has been found in the unripe seed capsules of Papaver somniferum L. Although it lacks analgesic effects and is unrelated to the compounds in the morphine class, it is a peripheral vasodilator and has a direct effect on vessels. It is reported to inhibit the cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) phosphodiesterase in smooth muscles, and it has been observed to increase intracellular levels of cAMP and cGMP. It induces coronary, cerebral, and pulmonary artery dilatation and helps to lower cerebral vascular resistance and enhance cerebral blood flow. Current pharmacological research has revealed that papaverine demonstrates a variety of biological activities, including activity against erectile dysfunction, postoperative vasospasms, and pulmonary vasoconstriction, as well as antiviral, cardioprotective, anti-inflammatory, anticancer, neuroprotective, and gestational actions. It was recently demonstrated that papaverine has the potential to control SARS-CoV-2 by preventing its cytopathic effect. These experiments were carried out both in vitro and in vivo and require an extensive understanding of the mechanisms of action. With its multiple mechanisms, papaverine can be considered as a natural compound that is used to develop therapeutic drugs. To validate its applications, additional research is required into its precise therapeutic mechanisms as well as its acute and chronic toxicities. Therefore, the goal of this review is to discuss the major studies and reported clinical studies looking into the pharmacological effects of papaverine and the mechanisms of action underneath these effects. Additionally, it is recommended to conduct further research via significant pharmacodynamic and pharmacokinetic studies.


Subject(s)
Alkaloids , Benzylisoquinolines , COVID-19 , Humans , Papaverine/pharmacology , Opium , SARS-CoV-2 , Alkaloids/pharmacology
5.
Biomolecules ; 13(1)2022 12 21.
Article in English | MEDLINE | ID: covidwho-2235488

ABSTRACT

Viruses are widely recognized as the primary cause of infectious diseases around the world. The ongoing global pandemic due to the emergence of SARS-CoV-2 further added fuel to the fire. The development of therapeutics becomes very difficult as viruses can mutate their genome to become more complex and resistant. Medicinal plants and phytocompounds could be alternative options. Isoquinoline and their related alkaloids are naturally occurring compounds that interfere with multiple pathways including nuclear factor-κB, mitogen-activated protein kinase/extracellular-signal-regulated kinase, and inhibition of Ca2+-mediated fusion. These pathways play a crucial role in viral replication. Thus, the major goal of this study is to comprehend the function of various isoquinoline and related alkaloids in viral infections by examining their potential mechanisms of action, structure-activity relationships (SAR), in silico (particularly for SARS-CoV-2), in vitro and in vivo studies. The current advancements in isoquinoline and related alkaloids as discussed in the present review could facilitate an in-depth understanding of their role in the drug discovery process.


Subject(s)
Alkaloids , COVID-19 , Viruses , Humans , Antiviral Agents/pharmacology , SARS-CoV-2 , Alkaloids/pharmacology , Isoquinolines/pharmacology , Isoquinolines/therapeutic use
6.
Phytother Res ; 37(4): 1462-1487, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2219851

ABSTRACT

Curcumin is extracted from the rhizomes Curcuma longa L. It is known for its anti-inflammatory and anti-oxidant activities. Despite its safety and potential for use against various diseases, curcumin's utility is restricted due to its low oral bioavailability. Co-administration of curcumin along with piperine could potentially improve the bioavailability of curcumin. The present review aimed to provide an overview of the efficacy and safety of curcumin-piperine co-supplementation in human health. The findings of this comprehensive review show the beneficial effects of curcumin-piperine in improving glycemic indices, lipid profile and antioxidant status in diabetes, improving the inflammatory status caused by obesity and metabolic syndrome, reducing oxidative stress and depression in chronic stress and neurological disorders, also improving chronic respiratory diseases, asthma and COVID-19. Further high-quality clinical trial studies are needed to firmly establish the clinical efficacy of the curcumin-piperine supplement.


Subject(s)
Alkaloids , COVID-19 , Curcumin , Humans , Curcumin/pharmacology , Alkaloids/pharmacology , Antioxidants/pharmacology , Dietary Supplements
8.
Molecules ; 28(2)2023 Jan 09.
Article in English | MEDLINE | ID: covidwho-2200542

ABSTRACT

Ephedrae Herba (Ephedra), known as "MaHuang" in China, is the dried straw stem that is associated with the lung and urinary bladder meridians. At present, more than 60 species of Ephedra plants have been identified, which contain more than 100 compounds, including alkaloids, flavonoids, tannins, sugars, and organic phenolic acids. This herb has long been used to treat asthma, liver disease, skin disease, and other diseases, and has shown unique efficacy in the treatment of COVID-19 infection. Because alkaloids are the main components causing toxicity, the safety of Ephedra must be considered. However, the nonalkaloid components of Ephedra can be effectively used to replace ephedrine extracts to treat some diseases, and reasonable use can ensure the safety of Ephedra. We reviewed the phytochemistry, pharmacology, clinical application, and alkaloid toxicity of Ephedra, and describe prospects for its future development to facilitate the development of Ephedra.


Subject(s)
Alkaloids , Antineoplastic Agents , COVID-19 , Drugs, Chinese Herbal , Ephedra , Humans , Drugs, Chinese Herbal/chemistry , Alkaloids/pharmacology , Ephedra/chemistry , Ephedrine/pharmacology
9.
Molecules ; 27(23)2022 Nov 24.
Article in English | MEDLINE | ID: covidwho-2123761

ABSTRACT

A new dimeric prenylated quinolone alkaloid, named 2,11-didemethoxy-vepridimerine A, was isolated from the root bark of Zanthoxylum rhetsa, together with twelve known compounds. The structure of the new compound was elucidated on the basis of spectroscopic investigations (NMR and Mass). The interaction of the isolated compounds with the main protease of SARS-CoV-2 (Mpro) was evaluated using molecular docking followed by MD simulations. The result suggests that 2,11-didemethoxy-vepridimerine A, the new compound, has the highest negative binding affinity against the Mpro with a free energy of binding of -8.5 Kcal/mol, indicating interaction with the Mpro. This interaction was further validated by 100 ns MD simulation. This implies that the isolated new compound, which can be employed as a lead compound for an Mpro-targeting drug discovery program, may be able to block the action of Mpro.


Subject(s)
Alkaloids , Antineoplastic Agents , COVID-19 , Quinolones , Zanthoxylum , SARS-CoV-2 , Molecular Docking Simulation , Alkaloids/pharmacology , Polymers , Protease Inhibitors , Molecular Dynamics Simulation
10.
Molecules ; 27(16)2022 Aug 10.
Article in English | MEDLINE | ID: covidwho-2023932

ABSTRACT

The discovery and the development of safe and efficient therapeutics against arthritogenic alphaviruses (e.g., chikungunya virus) remain a continuous challenge. Alkaloids are structurally diverse and naturally occurring compounds in plants, with a wide range of biological activities including beneficial effects against prominent pathogenic viruses and inflammation. In this short review, we discuss the effects of some alkaloids of three biologically relevant structural classes (isoquinolines, indoles and quinolizidines). Based on various experimental models (viral infections and chronic diseases), we highlight the immunomodulatory effects of these alkaloids. The data established the capacity of these alkaloids to interfere in host antiviral and inflammatory responses through key components (antiviral interferon response, ROS production, inflammatory signaling pathways and pro- and anti-inflammatory cytokines production) also involved in alphavirus infection and resulting inflammation. Thus, these data may provide a convincing perspective of research for the use of alkaloids as immunomodulators against arthritogenic alphavirus infection and induced inflammation.


Subject(s)
Alkaloids , Alphavirus Infections , Chikungunya virus , Quinolizidines , Alkaloids/pharmacology , Alkaloids/therapeutic use , Alphavirus Infections/drug therapy , Alphavirus Infections/pathology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Chikungunya virus/physiology , Humans , Indoles/therapeutic use , Inflammation , Isoquinolines , Quinolizidines/pharmacology
11.
Molecules ; 27(15)2022 Jul 25.
Article in English | MEDLINE | ID: covidwho-1957395

ABSTRACT

COVID-19, caused by the coronavirus SARS-CoV-2, emerged in late December 2019 in Wuhan, China. As of 8 April 2022, the virus has caused a global pandemic, resulting in 494,587,638 infections leading to 6,170,283 deaths around the world. Although several vaccines have received emergency authorization from USA and UK drug authorities and two more in Russia and China, it is too early to comment on the prolonged effectiveness of the vaccines, their availability, and affordability for the developing countries of the world, and the daunting task to vaccinate 7 billion people of the world with two doses of the vaccine with additional booster doses. As a result, it is still worthwhile to search for drugs and several promising leads have been found, mainly through in silico studies. In this study, we have examined the binding energies of several alkaloids and anthocyanin derivatives from the Solanaceae family, a family which contains common consumable vegetables and fruit items such as eggplant, pepper, and tomatoes. Our study demonstrates that Solanaceae family alkaloids such as incanumine and solaradixine, as well as anthocyanins and anthocyanidins, have very high predicted binding energies for the 3C-like protease of SARS-CoV-2 (also known as Mpro). Since Mpro is vital for SARS-CoV-2 replication, the compounds merit potential for further antiviral research towards the objective of obtaining affordable drugs.


Subject(s)
Alkaloids , COVID-19 Drug Treatment , Solanaceae , Alkaloids/pharmacology , Anthocyanins , Antiviral Agents/chemistry , Coronavirus 3C Proteases , Cysteine Endopeptidases/chemistry , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptide Hydrolases/metabolism , Phytochemicals/pharmacology , Protease Inhibitors/chemistry , SARS-CoV-2 , Solanaceae/metabolism , Vegetables/metabolism , Viral Nonstructural Proteins/metabolism
12.
Phytother Res ; 36(7): 2686-2709, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1941309

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which has a high mortality rate and transmissibility. In this context, medicinal plants have attracted attention due to the wide availability and variety of therapeutic compounds, such as alkaloids, a vast class with several proven pharmacological effects, like the antiviral and anti-inflammatory activities. Therefore, this scoping review aimed to summarize the current knowledge of the potential applicability of alkaloids for treating COVID-19. A systematic search was performed on PubMed and Scopus, from database inception to August 2021. Among the 63 eligible studies, 65.07% were in silico model, 20.63% in vitro and 14.28% clinical trials and observational studies. According to the in silico assessments, the alkaloids 10-hydroxyusambarensine, cryptospirolepine, crambescidin 826, deoxynortryptoquivaline, ergotamine, michellamine B, nigellidine, norboldine and quinadoline B showed higher binding energy with more than two target proteins. The remaining studies showed potential use of berberine, cephaeline, emetine, homoharringtonine, lycorine, narciclasine, quinine, papaverine and colchicine. The possible ability of alkaloids to inhibit protein targets and to reduce inflammatory markers show the potential for development of new treatment strategies against COVID-19. However, more high quality analyses/reviews in this field are necessary to firmly establish the effectiveness/safety of the alkaloids here described.


Subject(s)
Alkaloids , COVID-19 Drug Treatment , Alkaloids/chemistry , Alkaloids/pharmacology , Alkaloids/therapeutic use , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , SARS-CoV-2
13.
Comput Biol Med ; 147: 105738, 2022 08.
Article in English | MEDLINE | ID: covidwho-1894906

ABSTRACT

Over a span of two years ago, since the emergence of the first case of the novel coronavirus (SARS-CoV-2) in China, the pandemic has crossed borders causing serious health emergencies, immense economic crisis and impacting the daily life worldwide. Despite the discovery of numerous forms of precautionary vaccines along with other recently approved orally available drugs, yet effective antiviral therapeutics are necessarily needed to hunt this virus and its variants. Historically, naturally occurring chemicals have always been considered the primary source of beneficial medications. Considering the SARS-CoV-2 main protease (Mpro) as the duplicate key element of the viral cycle and its main target, in this paper, an extensive virtual screening for a focused chemical library of 15 batzelladine marine alkaloids, was virtually examined against SARS-CoV-2 main protease (Mpro) using an integrated set of modern computational tools including molecular docking (MDock), molecule dynamic (MD) simulations and structure-activity relationships (SARs) as well. The molecular docking predictions had disclosed four promising compounds including batzelladines H-I (8-9) and batzelladines F-G (6-7), respectively according to their prominent ligand-protein energy scores and relevant binding affinities with the (Mpro) pocket residues. The best two chemical hits, batzelladines H-I (8-9) were further investigated thermodynamically though studying their MD simulations at 100 ns, where they showed excellent stability within the accommodated (Mpro) pocket. Moreover, SARs studies imply the crucial roles of the fused tricyclic guanidinic moieties, its degree of unsaturation, position of the N-OH functionality and the length of the side chain as a spacer linking between two active sites, which disclosed fundamental structural and pharmacophoric features for efficient protein-ligand interaction. Such interesting findings are greatly highlighting further in vitro/vivo examinations regarding those marine natural products (MNPs) and their synthetic equivalents as promising antivirals.


Subject(s)
Alkaloids , COVID-19 Drug Treatment , Alkaloids/pharmacology , Antiviral Agents/chemistry , Coronavirus 3C Proteases , Humans , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2 , Structure-Activity Relationship , Viral Nonstructural Proteins/chemistry
14.
Proteins ; 90(9): 1617-1633, 2022 09.
Article in English | MEDLINE | ID: covidwho-1850203

ABSTRACT

The emergence of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) with the most contagious variants, alpha (B.1.1.7), beta (B.1.351), delta (B.1.617.2), and Omicron (B.1.1.529) has continuously added a higher number of morbidity and mortality, globally. The present integrated bioinformatics-cheminformatics approach was employed to locate potent antiviral marine alkaloids that could be used against SARS-CoV-2. Initially, 57 antiviral marine alkaloids and two repurposing drugs were selected from an extensive literature review. Then, the putative target enzyme SARS-CoV-2 main protease (SARS-CoV-2-Mpro) was retrieved from the protein data bank and carried out a virtual screening-cum-molecular docking study with all candidates using PyRx 0.8 and AutoDock 4.2 software. Further, the molecular dynamics (MD) simulation of the two most potential alkaloids and a drug docking complex at 100 ns (with two ligand topology files from PRODRG and ATB server, separately), the molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) free energy, and contributions of entropy were investigated. Then, the physicochemical-toxicity-pharmacokinetics-drug-likeness profiles, the frontier molecular orbitals energies (highest occupied molecular orbital, lowest unoccupied molecular orbital, and ΔE), and structural-activity relationship were assessed and analyzed. Based on binding energy, 8-hydroxymanzamine (-10.5 kcal/mol) and manzamine A (-10.1 kcal/mol) from all alkaloids with darunavir (-7.9 kcal/mol) and lopinavir (-7.4 kcal/mol) against SARS-CoV-2-Mpro were recorded. The MD simulation (RMSD, RMSF, Rg, H-bond, MM/PBSA binding energy) illustrated that the 8-hydroxymanzamine exhibits a static thermodynamic feature than the other two complexes. The predicted physicochemical, toxicity, pharmacokinetics, and drug-likeness profiles also revealed that the 8-hydroxymanzamine could be used as a potential lead candidate individually and/or synergistically with darunavir or lopinavir to combat SARS-CoV-2 infection after some pharmacological validation.


Subject(s)
Alkaloids , COVID-19 Drug Treatment , Alkaloids/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Cheminformatics , Computational Biology , Coronavirus 3C Proteases , Cysteine Endopeptidases/chemistry , Darunavir , Humans , Lopinavir , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , SARS-CoV-2
15.
J Mol Model ; 28(6): 144, 2022 May 11.
Article in English | MEDLINE | ID: covidwho-1838345

ABSTRACT

COVID-19 has recently grown to be pandemic all around the world. Therefore, efforts to find effective drugs for the treatment of COVID-19 are needed to improve humans' life quality and survival. Since the main protease (Mpro) of SARS-CoV-2 plays a crucial role in viral replication and transcription, the inhibition of this enzyme could be a promising and challenging therapeutic target to fight COVID-19. The present study aims to identify alkaloid compounds as new potential inhibitors for SARS-CoV-2 Mpro by the hybrid modeling analyses. The docking-based virtual screening method assessed a collection of alkaloids extracted from over 500 medicinal plants and sponges. In order to validate the docking process, classical molecular dynamic simulations were applied on selected ligands, and the calculation of binding free energy was performed. Based on the proper interactions with the active site of the SARS-CoV-2 Mpro, low binding energy, few side effects, and the availability in the medicinal market, two indole alkaloids were found to be potential lead compounds that may serve as therapeutic options to treat COVID-19. This study paves the way for developing natural alkaloids as stronger potent antiviral agents against the SARS-CoV-2.


Subject(s)
Alkaloids , COVID-19 Drug Treatment , Alkaloids/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Humans , Indole Alkaloids , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , SARS-CoV-2
16.
Molecules ; 27(9)2022 Apr 29.
Article in English | MEDLINE | ID: covidwho-1820341

ABSTRACT

Piper nigrum, or black pepper, produces piperine, an alkaloid that has diverse pharmacological activities. In this study, N-aryl amide piperine analogs were prepared by semi-synthesis involving the saponification of piperine (1) to yield piperic acid (2) followed by esterification to obtain compounds 3, 4, and 5. The compounds were examined for their antitrypanosomal, antimalarial, and anti-SARS-CoV-2 main protease activities. The new 2,5-dimethoxy-substituted phenyl piperamide 5 exhibited the most robust biological activities with no cytotoxicity against mammalian cell lines, Vero and Vero E6, as compared to the other compounds in this series. Its half-maximal inhibitory concentration (IC50) for antitrypanosomal activity against Trypanosoma brucei rhodesiense was 15.46 ± 3.09 µM, and its antimalarial activity against the 3D7 strain of Plasmodium falciparum was 24.55 ± 1.91 µM, which were fourfold and fivefold more potent, respectively, than the activities of piperine. Interestingly, compound 5 inhibited the activity of 3C-like main protease (3CLPro) toward anti-SARS-CoV-2 activity at the IC50 of 106.9 ± 1.2 µM, which was threefold more potent than the activity of rutin. Docking and molecular dynamic simulation indicated that the potential binding of 5 in the 3CLpro active site had the improved binding interaction and stability. Therefore, new aryl amide analogs of piperine 5 should be investigated further as a promising anti-infective agent against human African trypanosomiasis, malaria, and COVID-19.


Subject(s)
Alkaloids , Antimalarials , COVID-19 , Piper nigrum , Alkaloids/chemistry , Alkaloids/pharmacology , Animals , Antimalarials/pharmacology , Benzodioxoles , Humans , Mammals , Molecular Docking Simulation , Piper nigrum/chemistry , Piperidines , Polyunsaturated Alkamides/chemistry , Polyunsaturated Alkamides/pharmacology
17.
Biochem Biophys Res Commun ; 604: 76-82, 2022 05 14.
Article in English | MEDLINE | ID: covidwho-1797136

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in millions of deaths and seriously threatened public health and safety. Despite COVID-19 vaccines being readily popularized worldwide, targeted therapeutic agents for the treatment of this disease remain very limited. Here, we studied the inhibitory activity of the scutellarein and its methylated derivatives against SARS-CoV-2 main protease (Mpro) by the fluorescence resonance energy transfer (FRET) assay. Among all the methylated derivatives we studied, 4'-O-methylscutellarein exhibited the most promising enzyme inhibitory activity in vitro, with the half-maximal inhibitory concentration value (IC50) of 0.40 ± 0.03 µM. Additionally, the mechanism of action of the hits was further characterized through enzyme kinetic studies and molecular docking. Overall, our results implied that 4'-O-methylscutellarein could be a primary lead compound with clinical potential for the development of inhibitors against the SARS-CoV-2 Mpro.


Subject(s)
Alkaloids , Coronavirus 3C Proteases , Indoles , SARS-CoV-2 , Viral Protease Inhibitors , Alkaloids/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Humans , Indoles/pharmacology , Kinetics , Molecular Docking Simulation , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Viral Protease Inhibitors/pharmacology
18.
J Photochem Photobiol B ; 231: 112447, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1796437

ABSTRACT

Cuspareine as an antiviral alkaloid can be used in the treatment of COVID-19. In this study, we introduced the ionic liquids (ILs) concluded cuspareinium as a cation with CH3COO-, CF3COO-, and PF6 as anions. The optimized geometry, thermodynamic parameters, and reactivity descriptors were calculated with density functional theory (DFT) approach and time-dependent density functional theory (TD-DFT) using B3LYP/6-311G. In addition, the UV and IR spectra of the introduced ILs were investigated. Based on DFT calculation, the designed IL CH3COO- can be to the most suitable anions due to most solubility in the water. DFT studies displayed that all the introduced ILs have more polarity than pristine cuspareine and CH3COO--cuspareine is the most polarity due to high dipole moment. Also, the thermo- chemical data of the designed ionic liquids revealed that PF6-cuspareine is distinguished to be stable. A molecular docking study of the designed ILs with 6 LU7 protease was performed to display interactions and binding energy. Results of molecular docking displayed that CH3COO- ion liquid has the highest binding energy (- 7.20 kcal/mol) and Ala7, and Lys 5 residues are involved in an interaction. DFT and molecular docking studies of cuspareine as alkaloid based on ionic liquids can be helpful to for more pharmaceutical and biological researches of cuspareine as an antiviral agent against COVID-19.


Subject(s)
Alkaloids , COVID-19 Drug Treatment , Ionic Liquids , Alkaloids/pharmacology , Anions/chemistry , Antiviral Agents/pharmacology , Humans , Ionic Liquids/chemistry , Molecular Docking Simulation , Quinolines
19.
Viruses ; 14(4)2022 04 15.
Article in English | MEDLINE | ID: covidwho-1792418

ABSTRACT

Lamellarin α 20-sulfate is a cell-impenetrable marine alkaloid that can suppress infection that is mediated by the envelope glycoprotein of human immunodeficiency virus type 1. We explored the antiviral action and mechanisms of this alkaloid against emerging enveloped RNA viruses that use endocytosis for infection. The alkaloid inhibited the infection of retroviral vectors that had been pseudotyped with the envelope glycoprotein of Ebola virus and SARS-CoV-2. The antiviral effects of lamellarin were independent of the retrovirus Gag-Pol proteins. Interestingly, although heparin and dextran sulfate suppressed the cell attachment of vector particles, lamellarin did not. In silico structural analyses of the trimeric glycoprotein of the Ebola virus disclosed that the principal lamellarin-binding site is confined to a previously unappreciated cavity near the NPC1-binding site and fusion loop, whereas those for heparin and dextran sulfate were dispersed across the attachment and fusion subunits of the glycoproteins. Notably, lamellarin binding to this cavity was augmented under conditions where the pH was 5.0. These results suggest that the final action of the alkaloid against Ebola virus is specific to events following endocytosis, possibly during conformational glycoprotein changes in the acidic environment of endosomes. Our findings highlight the unique biological and physicochemical features of lamellarin α 20-sulfate and should lead to the further use of broadly reactive antivirals to explore the structural mechanisms of virus replication.


Subject(s)
Alkaloids , COVID-19 Drug Treatment , Ebolavirus , Hemorrhagic Fever, Ebola , Alkaloids/pharmacology , Antiviral Agents/chemistry , Dextran Sulfate , Ebolavirus/metabolism , Glycoproteins , Hemorrhagic Fever, Ebola/drug therapy , Heparin/pharmacology , Humans , SARS-CoV-2 , Virus Internalization
20.
Molecules ; 27(4)2022 Feb 16.
Article in English | MEDLINE | ID: covidwho-1715567

ABSTRACT

Alkaloids are nitrogen-containing compounds, biosynthesized by both marine and terrestrial organisms, often with strong biological properties [...].


Subject(s)
Alkaloids/chemistry , Alkaloids/pharmacology , Drug Discovery , Alkaloids/isolation & purification , Aquatic Organisms/chemistry , Biological Products , Drug Discovery/methods , Plant Extracts
SELECTION OF CITATIONS
SEARCH DETAIL